Problem Statement

We set out to design an easier method of draining a car’s motor oil. In doing this we hoped to encourage more people to drain their own oil instead of having somebody else do it for them, or having to pay an auto mechanic to perform the task.

Abstract

We began the process of designing a new motor oil drainage system by drawing out some possible designs of our product, researching relevant patents and existing products of various automobiles, choosing a Benchmark product, and putting together our initial Product Design Specification (PDS). Our design process involved much iteration on the actual product design, and research on parts that applied to each new design. Once our product design was finalized and a prototype was built we began testing using the knowledge we gathered from our data analysis of what the new oil valve would have to withstand.

Benchmark

Automobile: 1984 Cadillac Seville
Parts Used: Oil pan and plug

Automobile Specifications:
YEAR MODEL CYL CID
1982-85 SEVILLE V8 250 LTR VIN Dr. Plug # Gasket # 4.1 8 1003 2403
NOTES
Plug: M12 x 1.75
Hex Size: 15
Thread length: 25

Required Specifications

- Ability to drain motor oil without motorist having to go underneath their automobile.
- Product must be easy to attach to existing oil pan.
- Valve should be electronically activated by a switch.
- Valve must completely seal in the closed position.
- Product has to be able to withstand the conditions a car undergoes.
- Product must be able to withstand a specified temperature and pressure range.

Testing

Prototype Results:
Water Flow Rate: 9.42 mL/s
Oil Flow Rate: 0.651 mL/s

Water Weight Test:
Filled the oil pan with 9 quarts (8.514 L) of water exerting a force of 0.0124 lbs (0.0552N) on the gate. The valve was still able to open, close, and seal properly.

Solenoid Valve Weight Test:
Loaded the solenoid valve with 4x its weight. The solenoid still remained fully secure and operational with no leaks.

Market

Our survey results show that our product could be marketed to both individual motorists and car manufacturers with an emphasis more towards car manufactures due to the needed product installation.

Conclusion

With our prototype, we have designed and built a product that eliminates much of the hassle involved with draining and changing an automobile’s oil. This would encourage people to perform the task on their own instead of being forced to pay thirty or more dollars for the service of an auto mechanic.

Acknowledgements

Cesar J. Garcia, Father of Giancarlo Garcia
John L. Garcia, Uncle of Giancarlo Garcia
Kirk Fields, UCSB Engineer Mechanical
Pete Maxwell, UCSB Engineer Material and Mechanical
Mary Dinh, UCSB Engineer Mechanical
Stephen Laguette, UCSB Professor of Mechanical Engineering

References

Evolutionary Concepts Inc.
http://www.ecivalves.com/specs/SpecsS2400.htm
McMaster Carr
http://www.mcmaster.com
For Complete Reference List see Accompanying Project Portfolio.